Finding a Finite Group Presentation using Rewriting

نویسنده

  • Polina Strogova
چکیده

We describe a method for nding a minimal presentation of a nite group with the help of rewrite techniques. We use the correspondence between group relators and circuits in Cayley graphs to deene speciic inference rules, speeding up the completion procedure. Our framework is aimed at solving shortest path routing problem in Cayley graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rewriting Systems for Coxeter Groups

A finite complete rewriting system for a group is a finite presentation which gives a solution to the word problem and a regular language of normal forms for the group. In this paper it is shown that the fundamental group of an orientable closed surface of genus g has a finite complete rewriting system, using the usual generators a1, .., ag, b1, .., bg along with generators representing their i...

متن کامل

Tame combings, almost convexity and rewriting systems for groups

A finite complete rewriting system for a group is a finite presentation which gives an algorithmic solution to the word problem. Finite complete rewriting systems have proven to be useful objects in geometric group theory, yet little is known about the geometry of groups admitting such rewriting systems. We show that a group G with a finite complete rewriting system admits a tame 1-combing; it ...

متن کامل

Algorithms and Topology of Cayley Graphs for Groups

Autostackability for finitely generated groups is defined via a topological property of the associated Cayley graph which can be encoded in a finite state automaton. Autostackable groups have solvable word problem and an effective inductive procedure for constructing van Kampen diagrams with respect to a canonical finite presentation. A comparison with automatic groups is given. Another charact...

متن کامل

On Groups Presented by Monadic Rewriting Systems with Generators of Finite Order

We prove that the groups presented by finite convergent monadic rewriting systems with generators of finite order are exactly the free products of finitely many finite groups, thereby confirming Gilman’s Conjecture in a special case. We also prove that the finite cyclic groups of order at least three are the only finite groups admitting a presentation by more than one finite convergent monadic ...

متن کامل

Rewriting Systems in Alternating Knot Groups with the Dehn Presentation

Every tame, prime and alternating knot is equivalent to a tame, prime and alternating knot in regular position, with a common projection. In this work, we show that the Dehn presentation of the knot group of a tame, prime, alternating knot, with a regular and common projection has a finite and complete rewriting system. Although there are rules in the rewriting system with lefthand side a gener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995